
219

©2024 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

a member of the Old City Publishing Group

Int. Journ. of Unconventional Computing, Vol. 19, pp. 219–244
Reprints available directly from the publisher
Photocopying permitted by license only
DOI: 10.32908/ijuc.v19.120824

Design and Simulation of a
Hyperdimensional Computing

System with Memristive Associative
Memory for Image Classification

Kevin Pizarro and Ioannis Vourkas

Department of Electronic Engineering, Universidad Técnica
Federico Santa María, 2390123, Valparaíso, Chile

Received: August 12, 2024. Accepted: August 19, 2024.

Data-intensive application tasks have always fueled research and devel-
opment towards more powerful computing systems. In this context, the
recently proposed framework of hyper-dimensional computing (HDC) is
rapidly emerging to open new opportunities for the development of sys-
tems that perform cognitive tasks in hardware. The highly memory-cen-
tric nature of HDC was the key motivation for the in-memory computing
hardware implementation approaches explored recently where memris-
tive devices were used to locally implement logic operations. In this
work, we explore using memristive devices to implement one of the fun-
damental modules of an HDC system, the “associative memory” (AM).
We designed and simulated an HDC system in MATLAB software using
a behavioral model for memristive devices and explored the performance
of the HDC system in image classification tasks, using different AM
implementations to enrich the representation of the image classes in the
AM when they included up to 25% of noise. The simulation results also
explored the impact of nonidealities of memristive devices and demon-
strate the critical system design aspects to consider in such an implemen-
tation approach.

Keywords:  Hyperdimensional computing, image classification, associative
memory, single-layer neural network, perceptron, memristor, memristive device,
modeling and simulation

*Corresponding author email: ioannis.vourkas@usm.cl

220	 Kevin Pizarro and Ioannis Vourkas

1  INTRODUCTION

Data-intensive application tasks have always fueled research and develop-
ment towards more powerful computing systems that explore architectural
aspects beyond conventional architectures [1–2]. Brain-inspired architectures
are gaining considerable attention [3–4], especially for edge-computing
approaches where devices carry out cognitive tasks on the edge using limited
energy and computing resources. Moreover, advancements in deep learning
(DL) have led to improved performance compared to conventional machine
learning (ML) approaches in many applications [5–6]. Nevertheless, the nec-
essary massive data movements between the processing and the storage mod-
ules considerably stress the conventional computing structures and motivate
the development of novel computer architectures and methods [7–8].

In this context, the recently proposed framework of hyper-dimensional
computing (HDC) [9] is rapidly emerging as an attractive alternative,
broadening the opportunities for the development of systems that perform
cognitive tasks in hardware [10–11]. HDC is based on the properties of
hyper-dimensional spaces that could explain essential aspects of human
perception and cognition. HDC encodes all data features to high-dimen-
sional vectors (hyper-vectors) and performs efficiently the classification
task using a reduced set of well-defined operations [12–13]. It provides
competitive accuracy on prediction tasks with a much smaller model size
and training time than conventional ML. Therefore, it has shown promise in
many applications, including data classification, which is the focus of this
work. However, HDC comes with considerable memory requirements since
every specific data should be stored in a very long vector using thousands
of bits, which has motivated recent exploration of implementation alterna-
tives [14–15].

Moreover, the need for energy efficiency has motivated the exploration of
alternative device technologies, such as resistive-switching (memristive)
devices, which could store information in nonvolatile form using resistance
values [16–17]. In fact, the main operation in the HDC domain involves
manipulating large data patterns in memory. This highly memory-centric
nature of HDC was the key motivation for the in-memory computing hard-
ware implementation proposed in [18] where memristive devices were used
to locally implement logic operations [19]–20].

Likewise, in this work, we explore using memristive devices to imple-
ment one of the fundamental modules of an HDC system, the “associative
memory” (AM). We base our proposal on previous work in [21], where
single-layer memristive neural networks were used to implement AM struc-
tures. We designed and simulated an HDC system in MATLAB software
using a behavioral model for memristive devices [22], also considered in
[23] for developing digital emulators of memristive devices in hardware.

	D esign and Simulation of a Hyperdimensional Computing System	 221

Here, we explore the performance of the HDC system in image classifica-
tion tasks, using different AM implementations to enrich the representation
of the query image classes in the AM when they include up to 25% of noise.
The simulation results also explore the impact of nonidealities of memris-
tive devices and demonstrate the critical system design aspects to consider
in such an implementation approach, highlighting the computing capacity
of HDC and the promising features delivered by emerging device technolo-
gies, aiming toward more robust and comprehensive implementations in
digital hardware.

2  BASICS OF HYPERDIMENSIONAL COMPUTING

When HDC is used for classification tasks, hyper-vectors (HVs) are selected
to represent every symbol in a dataset. The symbols could be the letters of the
alphabet or the pixel positions within an image. HVs are the general comput-
ing elements. In every HV, its elements are randomly generated, they are
independent and identically distributed (i.i.d.). Equation (1) shows a
D-dimensional HV where hi stands for the element in position i within this
vector.

	 HV h h hD= 〈 … 〉, , ,1 2 	 (1)

In the hyper-dimensional space, for instance using the dimension of D =
10000, any two arbitrary HVs are nearly orthogonal and such quasi-orthogo-
nality of HVs enables HDC to represent and integrate information using a
variety of simple operations, namely; multiplication, addition, and permuta-
tion. The multiplication (binding) is used to bind two HVs together, which is
usually done using the bitwise XOR operation. The output HV is orthogonal
to the HVs being bound. Moreover, the addition (bundling) is used to com-
bine different HVs into a single HV, which is similar to each component used
in the bundling. The values in each element of the final HV are binarized
using the majority sum operation (i.e., component-wise majority). Equation
(2) and Equation (3) show the definition of the abovementioned fundamental
operations over HVs. The computing output of both bundling and binding
maintains the property of HVs. Finally, pseudo-random permutation (shift-
ing) is also applied, such as a circular shift, which aims at shuffling of the HV
contents.

	 bundling HV HV h h h h h hi j i j i j iD jD, , , ,() = 〈 + + … + 〉1 1 2 2 	 (2)

	 binding HV HV h h h h h hi j i j i j iD jD, * , * , , *() = 〈 … 〉1 1 2 2 	 (3)

222	 Kevin Pizarro and Ioannis Vourkas

Three main processes are required to establish an HDC model, named
the encoding process, the training process, and the inference process. A
fundamental component of an HDC model is the so called “Item Memory”
(IM), created as follows: Every element in the input set of signals is ran-
domly assigned a HV and saved in the IM. For instance, each pixel position
in an input image is assigned a unique seed HV. From an image with n
pixels, n quasi-orthogonal seed HVs are randomly generated, which are
stored in the IM and are kept during the training and inference phases of the
classification.

Encoding is the process to represent a data sample in the hyper-dimen-
sional domain. Using the case of image again as an example, for the encoding
of each pixel, HDC applies the binding operation to the corresponding seed
HV with the HV corresponding to its value, as shown in Equation (4), to
finally produce the HV of pixel position x:

	 HV binding HV HVpx seed x value x= (),, , 	 (4)

Next, the HDC encodes the entire image into a single image HV by applying
bundling to all pixel HVs. During the training process, an HDC model is built
over all the training samples to produce a prototype HV representing the
entire class of category. For an m-class classification task, HDC first encodes
each training sample image using the above-mentioned process. Eventually
the system combines all encoded HVs in the training stage to form one HD
vector representing each class. This information is stored in another funda-
mental module called “Associative Memory” (AM), whose essential function
is to compare the incoming encoded query HV with the stored class HVs and
return the closest class HV using appropriate similarity metrics. Both IM and
AM represent HVs that are stored permanently in the memory.

Figure 1 shows an example of what an IM and an AM would look like, in
this case representing digit patterns in 19 × 19-pixel images, assuming ten
distinguishable image classes corresponding to the ten digits. It can be noted
that each of the image pixels creates a HV within the IM. On the other hand,

FIGURE 1
Example of an Item Memory and an Associative Memory created for ten image classes, repre-
senting the ten digits, concerning a dataset of images with 19 × 19 pixels

	D esign and Simulation of a Hyperdimensional Computing System	 223

each class is associated with its corresponding HV in the AM. Finally, the
inference process is used to determine the class of a sample input image.
HDC first encodes the query image into a query HV following the same
encoding strategy, which will be compared with all the class HVs to find the
predicted class which demonstrates maximum similarity. To reveal the rela-
tionship between any two HVs, HDC utilizes the Hamming distance metric
to measure their similarity. This comprises two phases, first a bitwise XOR
operation followed by counting the resulting ones. If the Hamming distance
between two HVs is close to 0, it means that the two HVs are highly corre-
lated/similar. Eventually, the index of the class HV with the lowest Hamming
distance indicates the prediction result.

3 � DETAILS OF THE SIMULATION SETUP AND SYSTEM
DESIGN METHODOLOGY

In this work we study the problem of binary image classification using a
developed dataset with 19 × 19-pixel images, presenting the ten digits but
with different levels of noise. There are a total of 6260 images including the
10 original images with 0% noise. It is important to define that noise is intro-
duced with the random selection of a percentage of pixels in the original
image to perform a flip on their value. An example of the type of images
found in our dataset is shown in Figure 2. The system design and simulation
was performed in MATLAB software (ver. R2024a). For the image classifica-
tion system, the fundamental operations that make up a HDC system are first
implemented. The IM is generated, whose main function is to act as a tem-
plate to map the input information to the hyper-dimensional domain, yielding
as output the image characteristics represented by the HVs. The number of

FIGURE 2
Samples of the 19 × 19 images of the dataset used in this work: (a) without noise and (b) with
15% of noise

224	 Kevin Pizarro and Ioannis Vourkas

HVs stored in the IM is equivalent to the size of the image. It is important to
note that only one IM should be created and kept fixed during system opera-
tion/simulation. The size of the IM depends on the size of the image (number
of pixels) and the number of dimensions of the HVs, where we have consid-
ered D = 1000. For images with p pixels and HVs with D dimensions, the size
of the IM will be p × D bits. For a 19×19-pixel image, it is p = 361. Likewise,
the AM module is generated through the training process with samples of all
the m different classes of data. Consequently, the AM will be formed by m
HVs and its total memory size is m × D bits.

The IM is implemented using a MATLAB dictionary with 361 entries, one
for each pixel of the 19 × 19 images, and 361 random HVs are created that are
linked to each of the dictionary keys. In an analogous manner, the AM is
generated for the 10 classes, which is subsequently trained and finally used
for the inference phase. Finally, a similarity search must be performed within
the AM. Figure 3 summarizes the operation of the encoder. The permutation
is implemented through shifters that perform a shift only if the corresponding
pixel has a value of 1, otherwise it remains as it is in the IM. Then, the bun-
dling operation is performed. For the 361 HVs, all the bits in the first position
of each HV must be added and if the sum is greater than 50% of 361, then the
output value in that bit is 1. This is repeated with all the bit positions of the
HVs until a single output HV (HVOUT) is formed.

We evaluated the performance of a HDC model implemented in software
with D = 1000 dimensions. For the creation of the AM, the system was trained
with a noise-free reference image for each class, while for the inference, the
query images were randomly selected from the dataset and could include
noise. The simulation results are summarized in Figure 4 where we note that
with up to 12% noise in the query images, the classification accuracy remains
at 100%. As the noise increases up to 25%, the classification accuracy
decreases. However, the minimum achieved accuracy is 96%, which shows
that the software implementation of the HDC model operates correctly and
will serve as a reference for the performance tests that follow in the rest of
this work.

FIGURE 3
Block diagram exemplifying the operation of the encoding module within an HDC system

	D esign and Simulation of a Hyperdimensional Computing System	 225

To define the number of dimensions to be used for the HVs, we evaluated the
performance of the HDC system by varying the number of dimensions
between 500 and 10000, considering a fixed noise percentage in all the query
images. Our analysis showed that for D ≥ 1000, the maximum classification
accuracy was always achieved. Such results justify the use of D = 1000 in our
simulations, to limit the demand on memory resources to the minimum
acceptable level that guarantees the successful operation of the system.

In the following sections we explain how different topologies of interest
were assumed to build the associative memory module, particularly exploit-
ing the technology of memristive devices. More specifically, our software
implementation uses the concept of digital emulation of memristive devices
according to [23], where it was shown that there is an equivalence between a
behavioral mathematical model of memristors published in [22] and its
potential implementation/execution in digital hardware. For each different
topology to be evaluated, the performance is compared and analyzed based
on the metrics of interest, which include the accuracy of the classification
result, the tolerance to the variability that memristive devices may present,
and also the ability to correctly classify the input query images when they
include up to 25% noise.

4 � DESIGN OF A MEMRISTIVE ASSOCIATIVE MEMORY
FOR HDC MODELS

Here we present the design of an associative memory (AM) module based on
memristive devices (or memristors [24]), which are two-terminal bipolar
resistive-switching devices whose resistance can be modified by the applica-

FIGURE 4
Simulation results showing the classification accuracy percentage of the HDC system in software
for different levels of noise incorporated in the 19 × 19-pixel query images randomly chosen from
the dataset. The values of specific datapoints are highlighted in the curve for readability reasons

226	 Kevin Pizarro and Ioannis Vourkas

tion of voltage pulses that generally exceed certain threshold values. We
shortly present a mathematical model of a voltage-controlled memristive
device proposed in [22], which was also used in [23] to achieve the digital
emulation of such devices. Normally, models of such devices use at least two
equations. One of them is shown in Equation 5 which is the state-dependent
Ohm’s law. i(t) is the current through the device and v(t) the voltage across its
terminals, whereas R is the device resistance (memristance), which here repre-
sents the only state variable. The second necessary equation is shown in Equa-
tion 6 and reflects the rate of change of the state variable R, whose values are
bounded by the parameters RON and ROFF. Moreover, vT is the threshold volt-
age that determines when the applied voltage is high enough to induce a
change in the value of R. The process of decreasing the resistance is known as
SET, while the opposite process is known as RESET. The constants α and β
have a direct effect on the rate of change of R. Finally, θ(⋅) is the step function.

	 i t R v t() = ⋅ ()−1 	 (5)

	 R v v v v v R R R RT T ON OFF= ⋅ + ⋅ −()⋅ + − −()⋅ −()⋅ −()β α β θ θ
1

2
	 (6)

Asymmetric thresholds can be used for the SET and RESET processes, i.e.
have vT,SET different from |vT,RESET|. Moreover, it is possible to define differ-
ent variables β for the SET and RESET processes, and thus control the rate of
change independently for each process via βSET and βRESET. Variability could
also be added to the parameters to simulate non-idealities of physical mem-
ristive devices.

Figure 5 shows the general form of Equation 6, where it is important to
note that there are three zones derived from the expansion of the equation
itself. Zone 1 corresponds to the case when the voltage on the memristive
device does not exceed any of the switching thresholds, so only parameter α
will influence the switching rate if α ≠ 0. Zone 2 (RESET zone) corresponds
to the case when the applied voltage exceeds the negative threshold, whereas
zone 3 (SET zone) corresponds to the case when the applied voltage exceeds
the positive threshold value.

To corroborate the operation of the model according to the abovemen-
tioned equations in MATLAB, a memristive device was simulated with the
following values for its parameters: α = −0.1GΩ/(V∙s), βSET = −3GΩ/(V∙s),
βRESET = −1GΩ/(V∙s), vT,SET = 1.5V, vT,RESET = −0.5V, ROFF = 10KΩ, RON =
1KΩ, with initial state RINIT = 5KΩ. The device was subjected to a train of
voltage pulses 10ns-wide. Different amplitude values were used to cover all
cases, being lower or higher than the threshold values. The positive pulses
were selected with 1V and 2V amplitude, whereas the negative pulses had
−0.25V and −1.5V amplitude, respectively. In MATLAB, simulation advances

	D esign and Simulation of a Hyperdimensional Computing System	 227

FIGURE 5
Example of the possible form of Equation 6 which describes the memristance change rate as a
function of the applied voltage. The vertical dashed lines are a guide to the eye denoting possible
values for the SET and RESET thresholds. The inset shows the symbol of a memristive device.
Zones 2 and 3 correspond to the RESET and SET, respectively

FIGURE 6
Flow chat showing the steps involved in the digital simulation of memristive devices in MAT-
LAB

in user-defined timesteps Δt. Figure 6 shows the flowchart for the digital
emulation of a memristor in a MATLAB environment, according to guide-
lines in [23] where the authors implemented the same mathematical model
postulated in [22] within a Field Programmable Gate Array (FPGA) and its
execution advanced in discrete time steps, defined as multiples of the system
clock period. In our case, using a high-level modeling language such as
MATLAB, we seek an approximation equivalent to such implementation.

The simulation results are presented in Figure 7. First, when having an input
voltage of 0V it can be noticed that the memristance does not change. Then,
when applying a positive pulse of 1V, which is lower than vT,SET, a decrease of

228	 Kevin Pizarro and Ioannis Vourkas

20Ω in the memristance can be noticed. When applying positive pulses of 2V a
much more drastic decrease of the memristance can be noticed (60Ω), which is
because the parameter βSET affects the rate of change. Likewise, similar changes
can be seen for negative pulses whose values fall below or above the vT,RESET
threshold. Finally, by keeping the applied voltage at 0V, the device maintains its
last memristance value, demonstrating the desired nonvolatility.

The implementation of associative memory (AM) with memristive devices
is one of the fundamental concepts within this work. Figure 8 shows, in gen-
eral terms, the topology of an N-input single layer neural network, known as
“perceptron”, which implements a linear classifier used in supervised learn-
ing tasks. Perceptron has two fundamental elements. The first is the synaptic
connections, represented directly by the memristive devices with their con-
ductance Gi (with i from 1 to N), which defines the weight of the connection
between two neurons. The second element is the neuron Ni represented sym-
bolically with a triangle in the schematics shown in this work.

FIGURE 7
Simulation results for a memristive device submitted to a voltage pulse train. (a) the applied volt-
age. (b) the evolution of the memristance over time. Several data points are highlighted as a guide
to the eye to improve readability

FIGURE 8
Schematic diagram of a perceptron circuit with N input neurons and one single output neuron.
Synaptic connections between neurons are represented by the conductance of the memristive
devices Gi.

	D esign and Simulation of a Hyperdimensional Computing System	 229

Here we base our work on [21] where it was demonstrated that a percep-
tron can implement an associative memory (AM). In such topology, a strong
connection corresponds to a memristive device in low resistance (low resis-
tive state – LRS, or RON), whereas a weak connection corresponds to a high
resistance (high resistive state – HRS, or ROFF). Using a perceptron, having a
strong connection only with the input where a reference signal is applied, it is
possible to achieve the emergence of other strong connections during learn-
ing when different input signals are applied simultaneously with the refer-
ence signal, thus achieving the “association” of the different types of signals.

Moreover, according to [21], the operation of the simulated neurons has
three fundamental states: the IDLE state, the EXCITED state, and the
REFRACTORY state. The general behavior of the simulated neuron can be
described using a state diagram as in Figure 9. Within the configuration
parameters in the implementation of the neuron module we assume the rest-
ing time (IDLE_TIME) and the synaptic period (SYNAPSE_TIME). The
IDLE_TIME indicates how long the neuron will be in the refractory period.
Depending on the state in which the neuron is and on the input stimulus, an
action potential (output voltage) could be triggered. However, when in the
refractory period, even if there is a strong stimulus at the input, the neuron
will not trigger an action voltage pulse. On the other hand, the SYNAPSE_
TIME defines how long the neuron’s output will remain high.

Each neuron starts in IDLE state, and awaits a stimulus that is greater than
its activation threshold voltage VT (VT,NEURON) to transition to the EXCITED
state. While at rest, the output voltage will be 0V. In the EXCITED state, the
neuron output takes a value of 1V and remains in this state during SYN-
APSE_TIME. Finally, in the REFRACTION state there is also 0V at the out-
put. However, even if there is an input voltage greater than the activation
threshold, the output remains at 0V. The neuron remains in the REFRAC-
TION state during IDLE_TIME, which here we define according to [21].

FIGURE 9
State diagram for the operation of a simulated neuron. Arrows reflect all possible state transi-
tions, under the conditions described in text next to each arrow

230	 Kevin Pizarro and Ioannis Vourkas

Simulation results demonstrating the operation of the neuron model consid-
ered in this work, are presented in Figure 10. At first, when the input voltage
is lower than the activation threshold the neuron remains in IDLE state and
its output is at 0V. When the input voltage slightly exceeds the activation
threshold, the neuron reacts passing through the IDLE, EXCITED and
REFRACTION states continuously. In the EXCITED state, a voltage of −1V
is forced on the input node of the neuron, something that will be necessary
in the training/learning phase of the memristive associative memory mod-
ules evaluated in this work (not shown in the figure). Finally, when the input
voltage is even higher than the activation threshold, the time that the neuron
remains in the REFRACTION state is much shorter, thus responding at a
much higher frequency.

5 � A HYPERDIMENSIONAL COMPUTING SYSTEM FOR
IMAGE CLASSIFICATION

For the design and simulation of an image classifier based on HDC, the flow
of operations shown in Figure 11 was considered. The associative memory
(AM) module certainly is a key point to consider while exploring implemen-
tation alternatives that could improve or enrich the system´s performance.

In this work we seek to take advantage of the nature of memristive devices
to propose an alternative implementation of the AM module within an HDC
system. To better understand the steps to follow in the simulation of the sys-
tem and the different phases of operation, the process flow in Figure 12 is
presented. The simulation starts by reading the dataset of images needed in

FIGURE 10
Simulation results showing the response of a neuron. (top) the applied input voltage. (bottom)
the voltage at the output node of the neuron. The horizontal dashed line denotes the activation
threshold of the neuron. (middle) a color map showing the evolution of the states of the neuron
over time. Three scenarios are assumed: (1) when the input voltage cannot activate the neuron.
(2) when the input voltage slightly exceeds the activation threshold. (3) when the input voltage
is significantly higher than the activation threshold

	D esign and Simulation of a Hyperdimensional Computing System	 231

posterior stages. Given the defined parameters, both for the modules of the
HDC system and for the memristive devices, the item memory (IM) is created
and the AM is initialized with the instantiation of the perceptrons.

The training phase comes next, which aims to induce learning in each one
of the perceptrons denoted as Pi (with i from 0 to 9), one for each existing
class in the image dataset. It is important to note that the duration of the train-
ing for each perceptron depends on the number of dimensions of the HVs.
The content of the HVs is processed serially and for each element (bit) of the
HV a voltage pulse is applied to the perceptron inputs. After the perceptrons
have been trained, the inference/classification phase begins where all the per-
ceptrons must be used for every query image to be classified. This task could
eventually exploit the parallelism in dedicated hardware implementations for
fast execution, which however is out of the scope of this work. The two-input
perceptron (HDC P2) is used as the base topology, whose performance we
study below.

In the training phase, one of the perceptron inputs (INREF) receives the HV
representing a noise-free reference image, whereas the other input (INTRAIN)

FIGURE 11
Diagram describing the overall flow of operations for image classification/inference with an
HDC model.

FIGURE 12
Flow chart showing the steps involved in the simulation of an HDC system for image classifica-
tion in MATLAB

232	 Kevin Pizarro and Ioannis Vourkas

receives the HV representing a randomly chosen image of the same class. In
the initial configuration of the system, the synaptic connection with the INREF
input is strong, whereas the synaptic connection with the INTRAIN input is
weak (RTRAIN in HRS), and the objective of this process is precisely to
strengthen the weight of this connection by bringing the RTRAIN resistance
towards its RON limit value. At any given time, both the applied input signals
will be contributing to the calculation of the voltage at the common node of
the synaptic connections, which is the input node of the output neuron. How-
ever, the connection with the INREF input is stronger and therefore this signal
has a greater contribution in the activation of the output neuron. The process
can be better understood by observing Figure 13 which shows a case where
the same reference image is applied to both inputs of the perceptron during
the training/learning phase.

When the output neuron is activated, in the next timestep, a voltage of −1V
is forced on its input node. For this reason, if a 1V pulse is applied to the
INTRAIN input, then the voltage drop across the memristor with resistance
RTRAIN becomes equal to 2V and exceeds its SET threshold, causing its resis-
tance to decrease. To achieve the behavior described above, the parameter
values of the neurons and the memristive devices must be appropriately cho-
sen. In this case, we defined vT,SET = 1.5V and vT,RESET = −0.5V, and the
neurons were configured with an activation threshold VT,NEURON = 0.5V. The
output voltage of the neurons takes values of 0V or 1V to be consistent with
the content of the binary HVs. We also define RON = 100Ω and ROFF = 10KΩ,
a range that has often been observed in commercially available devices [20],
[25], as it also happens with the case of asymmetric thresholds where vT,SET
is here selected greater than |vT,RESET|. Finally, the rate of change of the mem-
ristance must be defined through the parameters α, βSET and βRESET. Here we
chose the rate of change to be symmetric for SET and RESET, unless stated
differently, with βSET = βRESET.

In the classification stage, the INTRAIN input now becomes the INQUERY
input where the applied HV represents the image to be classified. At the same
time, the HV of an empty image, i.e. an image whose pixels all have zero
value, is applied to the INREF input. This situation is presented in Figure 14.
Under these conditions, and assuming a successful previous training, both

FIGURE 13
Diagram exemplifying the training/learning phase for a perceptron with two inputs. The connec-
tion where the reference signal is applied is strong (LRS) whereas the connection with the other
neuron is initially weak (HRS)

	D esign and Simulation of a Hyperdimensional Computing System	 233

synaptic connections are strong with the resistance of the memristive devices
in LRS at a value close to RON, and therefore both have the same weight in the
contribution to the voltage at the input node of the output neuron. In this way,
the activation of the output neuron will depend on the pulses applied at the
INQUERY input.

With the introduction of a memristive AM module, the composition of the
designed HDC system can be redefined as presented in Figure 15, where the
AM module is shown to include a total of 10 perceptrons, one for each class
present in the image dataset. However, in order to combine information from
several different images and achieve a better representation of each class in
the AM of the HDC system, an alternative strategy explored in this work
consists in using perceptrons with more than 2 inputs.

More specifically, the possibility of having 4 inputs was evaluated, whose
synaptic connections were trained based on images with different levels of
noise in order to broaden the grade of representation of each class. In particular,
the noise levels used were 0% (equivalent to a clean image), 5%, 10% and 15%.

FIGURE 14
Diagram exemplifying the classification phase for a perceptron with two inputs. The connection
where the reference signal is applied is by default strong (LRS) but the same occurs for the con-
nection with the query input after successful learning.

FIGURE 15
Diagram describing the overall flow of operations for image classification/inference with an
HDC model, where the design of the memristive associative memory module is particularly
highlighted, based on 2-input perceptrons

234	 Kevin Pizarro and Ioannis Vourkas

Figure 16 shows the diagram of the 4-input perceptron using memristive
devices, where the training inputs correspond to images with different percent-
age of noise. For the training phase, initially the synaptic connection of the
INREF input is always strong (LRS), whereas all the other connections are weak
(HRS). As for the neurons, all the parameters determined previously are main-
tained. It cannot be overlooked that those input neurons whose HVs correspond
to images with lower levels of noise are more likely to be stimulated simultane-
ously with the reference input (or noise-free input), and therefore get the cor-
responding memristive devices toward LRS values closer to the RON limit. We
generally expect that the resistance of the memristive devices at the end of the
training period, would be of the form R1 ≤ R2 ≤ R3 ≤ R4, where R1 is RREF and
R4 is the connection with the input where the applied signals represent the
noisiest images (15%).

FIGURE 16
Diagram exemplifying the training/learning phase for a perceptron with four inputs. The connec-
tion where the reference signal is applied is strong (LRS) whereas the connection with the other
neurons is initially weak (HRS)

FIGURE 17
Diagram exemplifying the classification phase for a perceptron with four inputs. The connection
where the reference signal is applied is by default strong (LRS) but the state of the rest of the
synaptic connections depends on the previous learning process. As an example, here only 2 of the
3 training memristive devices are shown in LRS

	D esign and Simulation of a Hyperdimensional Computing System	 235

For the inference phase in such extended perceptron topology, the process
is very similar to the case with the two input perceptrons. As shown in
Figure 17, the reference input image represents an empty image, whereas
the other three inputs receive the same HV that represents the image to be
classified. Thus, the strongest connections are expected to predominate in
the activation of the output neuron.

Following the same strategy, it is possible to use perceptrons with as many
inputs as necessary. Considering that the image dataset includes images with
up to 25% of noise, in our analysis we included the case of an AM based on
perceptrons with 6 inputs where HVs of images with 0%, 5%, 10%, 15%,
20% and 25% noise were applied. The operation in the training and inference
phases is the same as that described previously for the case of 4 inputs.

The last process of the HDC system to be described is the similarity
search, which is necessary in the classification stage. Figure 18 shows a dia-
gram that explains the operations that make up the similarity search and the
way in which the module is connected to the AM. The query image informa-
tion is passed through the encoder to obtain HVOUT. Then, HVOUT is passed
as input to each perceptron of the AM for inference, thus obtaining the HVs
denoted as OUTX (with x from 0 to 9) which must then be compared with the
HVs that were obtained from the training phase (TRAINEDX). To this end, a
bitwise XOR operation is performed between TRAINEDx and OUTx with the
result reflected in HV_COMPx. This process is repeated for each pair of
TRAINEDX - OUTX. Subsequently, all the bits of each HV_COMPX are
added to obtain the number of bits in which the TRAINEDX - OUTX pairs
differ (simX). Finally, all simX values are compared and that with the lowest
value corresponds to the inferred class.

FIGURE 18
Diagram describing the overall flow of operations for similarity search between the query image
and the contents of AM (trained HVs), within an HDC system used for image classification/
inference. The connections between the similarity search module and the memristive AM mod-
ule (here appearing with 2-input perceptrons) are highlighted

236	 Kevin Pizarro and Ioannis Vourkas

6  SIMULATION RESULTS

Through different configurations of the memristive devices, we explore the
performance of the HDC system and the impact produced by the different
switching rates of the devices to the effectiveness of the training/learning
phase of the AM. We particularly focus on the asymmetric nature of the SET
and RESET processes, related to the learning and forgetting rates that are
occurring during training. Moreover, we assess the effect produced by the
non-idealities of the memristive device technology, such as the variability of
the SET/RESET thresholds, among others. The simulations were carried out
for D = 1000 dimensions and 25 iterations of each experiment, using a total
of 250 images with 10% noise in the inference phase. That is, 25 different
images for each digit with 10% of pixels altered.

6.1  Impact of asymmetric switching rates on learning performance
We simulated the behavior of a perceptron with four inputs during the
training phase. The simulation lasted 10μs, since D = 1000 and the applied
pulse for every HV element was 10 ns wide. The memristive device that
corresponds to the input where the reference signal was applied was the
only one initialized in LRS. The other inputs receive the HVs that repre-
sent images with 5%, 10% and 15% noise, respectively. In Figure 19 we
observe the results for the case where the learning rate is greater than the
forgetting rate. The values used were α = −10KΩ/(V∙s) and βRESET =
−5GΩ/(V∙s) in the three simulated cases, but the value of βSET varied with
values −10, −15, and −20GΩ/(V∙s). It can be noted that the higher the
value of βSET, the better the training result since it is guaranteed that a
greater number of memristive devices reach their LRS, thus improving the
classification precision.

Similarly, the behavior of the same perceptron was evaluated when the
learning rate was lower than the forgetting rate during training. In practical
terms, this means that a negative voltage on the memristive devices could

FIGURE 19
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when (a) βSET = −10GΩ/(V∙s), (b) βSET
= −15GΩ/(V∙s), and (c) βSET = −20GΩ/(V∙s). In every case the best achieved classification accu-
racy for digit 0 with 10% of noise in the query images during inference, is informed in the inset.

	D esign and Simulation of a Hyperdimensional Computing System	 237

cause a significant increase in their resistance, thus nullifying the previously
acquired training result. The parameters that were kept fixed in each simula-
tion are α = −10KΩ/(V∙s) and βSET = −15GΩ/(V∙s), whereas βRESET varied
taking the values −20, −25, and −35GΩ/(V∙s). In the simulation results shown
in Figure 20 we notice that, the higher the value of βRESET, the worse the
training process is, since the memristive devices do not manage to completely
switch to their LRS. Consequently, the classification accuracy gets signifi-
cantly worse (see inset). We repeated the same process for the case of a
6-input perceptron, this time using images with up to 25% noise. For the case
where the learning rate was higher than the forgetting rate during the training
period, we kept the same value of βRESET in the three cases while varying the
value of βSET. In the simulation results of Figure 21 we observe that the
higher the value of βSET, the better the training result and the more effective
the classification process. All in all, the same trends as observed previously in
Figure 19 are also present here for the 6-input perceptron.

Finally, for the case where the learning rate is lower than the forgetting
rate during training, more dispersed curves were obtained as it can be seen in

FIGURE 20
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when (a) βRESET = −20GΩ/(V∙s), (b)
βRESET = −25GΩ/(V∙s), and (c) βRESET = −35GΩ/(V∙s). In every case the best achieved classifica-
tion accuracy for digit 0 with 10% of noise in the query images during inference, is informed in
the inset

FIGURE 21
Simulation results showing the average memristance evolution over time for all the synaptic
connections of a perceptron with six inputs during training, when (a) βSET = −10GΩ/(V∙s), (b)
βSET = −15GΩ/(V∙s), and (c) βSET = −20GΩ/(V∙s). In every case the best achieved classification
accuracy for digit 0 with 10% of noise in the query images during inference, is informed in the
inset

238	 Kevin Pizarro and Ioannis Vourkas

the results shown in Figure 22, similar to the results shown previously in
Figure 20 for the case of a 4-input perceptron. The higher the value of βRESET,
the worse the training process is and the classification accuracy decreases
substantially.

Everything considered, the most important conclusion of this exploration
is that there are several configurations of the memristive devices that give
positive results, i.e. where the achievable precision of classification is higher
than 90%. To obtain such results, it is important to achieve a decrease in the
resistance value of the memristive devices of the trained synaptic connections
toward values close to the RON limit. However, our analysis showed that this
is necessary to occur with at least one of the devices in the case of a 4-input
perceptron, or at least two memristive devices when the perceptrons have 6
inputs.

6.2 � Impact of nonidealities of memristive devices on learning
performance

Real memristive devices show considerable variability in their switching behav-
ior [26], unlike the ideal behavior considered so far in simulations. For this rea-
son, in order to obtain more reliable simulation results, in this section we
evaluate the response of the system in presence of variability in the memristive
devices. One of the model parameters that can be considered to introduce vari-
ability is the threshold values for the SET and RESET processes. The parameter
values used in the ideal scenario are vT,SET = 1.5V and vT,RESET = −0.5V, taking
into account that a voltage of 2V is applied for SET and a voltage of −1V is
applied to the memristive devices for RESET. Therefore, it makes sense to con-
sider variations for both SET and RESET thresholds that allow to observe the
effect of variability without risking to nullify the SET and RESET processes,
making sure that the applied voltage for SET and RESET will always be higher
than the threshold even in the extreme cases of variability. In this context,
we explore the response of the system in the most and the least favorable

FIGURE 22
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with six inputs during training, when (a) βRESET = −20GΩ/(V∙s), (b)
βRESET = −25GΩ/(V∙s), and (c) βRESET = −35GΩ/(V∙s). In every case the best achieved classifica-
tion accuracy for digit 0 with 10% of noise in the query images during inference, is informed in
the inset

	D esign and Simulation of a Hyperdimensional Computing System	 239

conditions for learning, comparing them with the nominal case (the case without
variability).

We simulate the behavior of a perceptron with four inputs during the train-
ing phase. Three scenarios are considered: the worst case, the nominal case,
and the best case. The worst case is where incomplete training is observed,
which is achieved with vT,RESET = −0.25V and vT,SET = 1.75V since the effect
of the forgetting rate is maximized and the effect of the learning rate is mini-
mized. Similarly, for the best case where early learning is achieved during the
training period, the learning rate is maximized and the forgetting rate is min-
imized with vT,RESET = −0.75V and vT,SET = 1.25V. In the results shown in
Figure 23 it can be seen that varying the threshold voltages in the model used
for the memristive devices has the same effect as modifying the parameters
βSET and βRESET, which determine the rate of variation of the resistance, and
therefore, the speed with which the perceptron can be trained. This kind of
exploration provides results which allow the system designer to evaluate the
worst scenario for such HDC system, given an initial configuration for it, to
further examine whether it is necessary to modify the training time or change
the amplitude of the applied pulses during training to achieve better classifi-
cation performance.

Another of the model parameters that can be considered for applying vari-
ability is the limiting resistance value reachable during SET and RESET, i.e.
RON and ROFF. In this way, the possibility of having devices whose high or low
resistance state does not correspond to a fixed value, but instead to a variety of
similar values is considered. However, for the result of the classification pro-
cess, what determines the behavior of the system is the degree to which each
memristive device has approached the RON resistance. Consequently, we per-
form simulations where we use a fixed ROFF but where the RON value varies
within specific margins. We define the rest of the simulation parameters as
D = 1000, we apply 10% image noise, α = −10KΩ/(V∙s), βSET = βRESET =

FIGURE 23
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when extreme values were considered
for the threshold parameter as follows: (a) vT,RESET = −0.25V and vT,SET = 1.75V, (b) vT,RESET =
−0.5V and vT,SET = 1.5V, and (c) vT,RESET = −0.75V and vT,SET = 1.25V. In every case the best
achieved classification accuracy for digit 0 with 10% of noise in the query images during infer-
ence, is informed in the inset

240	 Kevin Pizarro and Ioannis Vourkas

−24GΩ/(V∙s), vT,SET = 1.5V, vT,RESET = −0.5V, ROFF = 10KΩ, and initialize the
memristive devices with R1 = RON, RX = ROFF (with x = {2, 3, ..., 6}). We
consider 2-input, 4-input, and 6-input perceptrons and vary the RON value
with respect to the nominal value. R1 refers to the memristive device of the
reference input, whereas RX refers to the memristive devices of the rest of the
perceptron inputs.

Table 1 shows a summary of the simulation results. It can be noted that the
impact of the theoretically worst case where it is R1,ON < Rx,ON (this forces the
training memristive devices to achieve LRS values higher than that of the
reference LRS value) is clearly observed for the HDC system whose AM
used 2-input perceptrons (HDC P2). However, by including more inputs in
the perceptron circuits, robustness to the difference between R1,ON and Rx,ON
is gained. In particular, the average classification accuracies were higher for
the case of 6-input perceptrons (HDC P6), followed by the 4-input perceptron
case (HDC P4), and finally by the implementation with HDC P2.

6.3 � Impact of HV dimensions and of query image noise on
classification accuracy

One of the essential tests when working with the HDC paradigm is to observe
the performance of the system as the number of dimensions for each HV
increases. In this direction, Figure 24 shows the simulation results for the
cases where the AM module used perceptrons with 2 (HDC P2), 4 (HDC P4),
and 6 (HDC P6) inputs, compared to the original implementation of the sys-
tem without considering the use of memristive associative memory (HDC).
The classification of a total of 250 images with 10% noise was again pursued.
It can be noted that, among the three variations under test for the AM module,
the HDC P2 presents the worst results, whereas HDC P4 and HDC P6 have
practically identical curves. Interestingly, both HDC P4 and HDC P6 achieve

LRS Limit Memristance Value Average HDC Classification Accuracy

R1,ON (Ω) RX,ON (Ω) HDC P2 (%) HDC P4 (%) HDC P6 (%)

100 250 10 69.2 94

60 140 10 94.4 94.8

85 115 10 92.8 94

100 100 82.4 94.8 94.8

115 85 94 93.6 95.2

140 60 94 93.2 95.6

250 100 94 93.2 95.6

TABLE 1
Summary of average achieved classification accuracy for different implementations of the asso-
ciative memory when different values were assumed for the RON parameter of the memristive
devices

	D esign and Simulation of a Hyperdimensional Computing System	 241

a classification accuracy that exceeds 99% for D ≥ 3000. The observed differ-
ence in the performance of HDC P2 compared to the other two alternatives
suggests that, when aiming to implement a robust classification system, it is
necessary to consider noisy information in the training phase, thus more
inputs in the memristive perceptron circuits. It is also intuitive to think that,
with a larger number of dimensions used in the HVs, the need for hardware
resources will increase, so there is a trade-off between the requirement for
resources and the minimum desirable accuracy in the performance of the
designed HDC system.

One of the most important and widely-documented characteristics of HDC
is its robustness to noise. Therefore, as a final test in this study, we observed
and analyzed the system´s performance depending on the noise levels present
in the input images to be classified. We chose a fixed number of dimensions
D = 1000 while varying the noise level present in the query images from 0%
to 25% with a step of 1%. We performed 25 repetitions of the experiment for
each noise level. The simulation results are shown in Figure 25. We observe
that the proposed topologies that make use of perceptron-based associative
memory demonstrate an earlier decrease in their performance and at a higher
rate, compared to the original HDC implementation. It can be noted that
HDC P2 is the implementation that shows the worst results, which can be
explained by the fact that its training/learning was performed using only
clean images without noise. On the other hand, the systems using HDC P4
and HDC P6 were trained with noisy images, together with a clean reference.

FIGURE 24
Simulation results for the average classification accuracy achieved for query images with up to
10% noise, comparing the original software implementation of HDC with the three alternatives
considered for the AM module using perceptrons with 2 (HDC P2), 4 (HDC P4), and 6 (HDC
P6) inputs

242	 Kevin Pizarro and Ioannis Vourkas

It should be noted that in the case of HDC P4, images with up to 15%
noise were used in training, whereas for HDC P6 the noise considered in the
images during training reached 25%. This explains the fact that in the graphs
of Figure 25 we notice a similar behavior between both for up to approxi-
mately 15% of image noise. From this point on, the performance of HDC P6
slightly exceeds that of HDC P4, achieving a 5% improvement in classifica-
tion accuracy when the query images had the maximum amount of noise. It
can also be observed that the accuracy of the original HDC implementation
varies only between 95% and 100%, and that a slight decrease is observed
only when the image noise exceeds 13%. In general, this HDC implementa-
tion demonstrates the best performance, which underlines the capacity of the
HDC concept to be used in classification tasks.

CONCLUSIONS

Through supervised learning at circuit level, this work explored the design and
implementation of associative memory modules for HDC systems based on
memristive perceptron circuits. The proposed implementations fit seamlessly
in the definition of an HDC system for classification tasks and performed well,
compared to the original software implementation of a “pure” HDC. Never-
theless, the idea of expanding the number of inputs of the memristive percep-

FIGURE 25
Simulation results for the average classification accuracy achieved for query images with up to
25% noise, comparing the original software implementation of HDC with the three alternatives
considered for the AM module using perceptrons with 2 (HDC P2), 4 (HDC P4), and 6 (HDC
P6) inputs

	D esign and Simulation of a Hyperdimensional Computing System	 243

trons to achieve a better representation of the image dataset classes led to
better results, underlying the importance of considering this in potential
implementations in hardware (HW). The simulation of memristive devices
followed an approach compatible with execution in digital HW, so the pro-
posed circuits could be considered for future HW accelerators of HDC classi-
fiers. Still, the performance of the designed system could not exceed that of the
pure software HDC implementation. However, further optimizations are pos-
sible, and a larger number of inputs in the perceptron circuits could decrease
the performance gap. Moreover, such memristive associative memory, if
implemented in HW, could certainly exploit parallelism of execution, and thus
lead to very efficient, low-energy implementation.

ACKNOWLEDGMENTS

This work was funded by the Chilean government under grants FONDECYT
Regular No. 1221747 and ANID-Basal FB0008.

REFERENCES

  [1]	 T. N. Theis, and H.-S. P. Wong, “The end of Moore’s law: A new beginning for information
technology,” Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50, 2017.

  [2]	 A. Sebastian, et al., “Temporal correlation detection using computational phase-change
memory,” Nat. Commun., vol. 8, no. 1115, 2017.

  [3]	 T. F. Wu, et al., “Brain-inspired computing exploiting carbon nanotube FETs and resistive
RAM: hyperdimensional computing case study,” 2018 IEEE International Solid-State Cir-
cuits Conference (ISSCC), San Francisco, CA, USA, Feb. 11–15.

  [4]	 D. Kleyko, and E. Osipov, “Brain-like classifier of temporal patterns,” 2014 International
Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia,
June 3-5.

  [5]	 V. Joshi, et al., “Accurate deep neural network inference using computational phase-
change memory,” Nat. Commun., vol. 11, no. 2473, 2020.

  [6]	 H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard, “Deep Q-Learning Based Reinforce-
ment Learning Approach for Network Intrusion Detection,” Computers, vol. 11, no. 3(41),
2022.

  [7]	 F. Pinto, and I. Vourkas, “Robust Circuit and System Design for General-Purpose Compu-
tational Resistive Memories,” Electronics, vol. 10, no. 9, pp. 1074, 2021.

  [8]	 I. Vourkas, G. Papandroulidakis, G. Ch. Sirakoulis, and A. Abusleme, “2T1M-Based Dou-
ble Memristive Crossbar Architecture for In-Memory Computing,” Int. Journ. of Uncon-
ventional Computing, vol. 12, no. 4, pp. 265–280, 2016.

  [9]	 P. Kanerva, “Hyperdimensional Computing: An Introduction to Computing in Distributed
Representation with High-Dimensional Random Vectors,” Cogn. Comput., vol. 1, pp.
139–159, 2009.

[10]	 M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD: Hyperdimensional computing
for efficient speech recognition,” 2017 IEEE International Conference on Rebooting Com-
puting (ICRC), Washington, DC, USA, Nov. 08–09.

[11]	 E. Hassan, Y. Halawani, B. Mohammad, and H. Saleh, “Hyper-Dimensional Computing
Challenges and Opportunities for AI Applications,” IEEE Access, vol. 10, pp. 97651–
97664, 2022.

244	 Kevin Pizarro and Ioannis Vourkas

[12]	 L. Ge, and K. K. Parhi, “Classification using hyperdimensional computing: A review,”
IEEE Circuits Syst. Mag., vol. 20, no. 2, pp. 30–47, 2020.

[13]	 A. Kazemi, et al., “Achieving software-equivalent accuracy for hyperdimensional comput-
ing with ferroelectric-based in-memory computing,” Sci. Rep., vol. 12, no. 19201, 2022.

[14]	 S. Datta, R. Antonio, A. Ison, and J. Rabaey, “A Programmable Hyper-Dimensional Pro-
cessor Architecture for Human-Centric IoT,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 3, pp. 439 - 452, 2019.

[15]	 D. Liang, J. Shiomi, N. Miura, and H. Awano, “DistriHD: A Memory Efficient Distributed
Binary Hyperdimensional Computing Architecture for Image Classification,” 2022
Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan,
Jan. 17–20.

[16]	 M. Lanza, et al., “Memristive technologies for data storage, computation, encryption, and
radio-frequency communication,” Science, vol. 376, no. 6597, Jun. 2022.

[17]	 I. Vourkas, M. Escudero, G. Ch. Sirakoulis, and A. Rubio, “Ubiquitous memristors in
multi-level memory, in-memory computing, data converters, clock generation and sig-
nal transmission,” in: P. Dimitrakis, I. Valov, and S. Tappertzhofen (Eds.) “Metal oxides
for non-volatile memory, materials, technology and applications,” Elsevier, 2022, pp.
445–463.

[18]	 G. Karunaratne, et al., “In-memory hyperdimensional computing,” Nature Electronics,
vol. 3, pp. 327–337, 2020.

[19]	 I. Vourkas, and G. Ch. Sirakoulis, “Emerging Memristor-based Logic Circuit Design
Approaches: A Review,” IEEE Circuits Syst. Mag., vol. 16, no. 3 (3rd quarter), pp. 15–30,
2016.

[20]	 C. Fernandez, A. Cirera, and I. Vourkas, “Design Exploration of Threshold Logic in Mem-
ory and Experimental Implementation using Knowm Memristors,” Int. Journ. of Uncon-
ventional Computing, vol. 18, no. 2-3, pp. 249–267, Jun. 2023.

[21]	 Y. V. Pershin and M. Di Ventra, “Experimental demonstration of associative memory with
memristive neural networks,” Neural Netw., vol. 23, no. 7, pp. 881–886, 2010.

[22]	 Y. Pershin and M. Di Ventra “SPICE model of memristive devices with threshold,” Radio-
engineering, vol. 22, no. 2, pp. 485–489, 2013.

[23]	 V. Ntinas, I. Vourkas, A. Abusleme, G. Ch. Sirakoulis, and A. Rubio, “Experimental Study
of Artificial Neural Networks Using a Digital Memristor Simulator”, IEEE Trans. Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 5098–5110, 2018.

[24]	 L. Chua, “Everything you wish to know about memristors but are afraid to ask,” Radioen-
gineering, vol. 24, no. 2, pp. 319–368, 2015.

[25]	 K. A. Campbell, “Self-directed channel memristor for high temperature operation,” Micro-
electron. J., vol. 59, pp. 10–14, Jan. 2017.

[26]	 J. B. Roldán, et al, “Variability in Resistive Memories,” Adv. Intell. Syst., no. 2200338,
2023.

