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Data-intensive application tasks have always fueled research and devel-
opment towards more powerful computing systems. In this context, the 
recently proposed framework of hyper-dimensional computing (HDC) is 
rapidly emerging to open new opportunities for the development of sys-
tems that perform cognitive tasks in hardware. The highly memory-cen-
tric nature of HDC was the key motivation for the in-memory computing 
hardware implementation approaches explored recently where memris-
tive devices were used to locally implement logic operations. In this 
work, we explore using memristive devices to implement one of the fun-
damental modules of an HDC system, the “associative memory” (AM). 
We designed and simulated an HDC system in MATLAB software using 
a behavioral model for memristive devices and explored the performance 
of the HDC system in image classification tasks, using different AM 
implementations to enrich the representation of the image classes in the 
AM when they included up to 25% of noise. The simulation results also 
explored the impact of nonidealities of memristive devices and demon-
strate the critical system design aspects to consider in such an implemen-
tation approach. 
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1  INTRODUCTION

Data-intensive application tasks have always fueled research and develop-
ment towards more powerful computing systems that explore architectural 
aspects beyond conventional architectures [1–2]. Brain-inspired architectures 
are gaining considerable attention [3–4], especially for edge-computing 
approaches where devices carry out cognitive tasks on the edge using limited 
energy and computing resources. Moreover, advancements in deep learning 
(DL) have led to improved performance compared to conventional machine 
learning (ML) approaches in many applications [5–6]. Nevertheless, the nec-
essary massive data movements between the processing and the storage mod-
ules considerably stress the conventional computing structures and motivate 
the development of novel computer architectures and methods [7–8].

In this context, the recently proposed framework of hyper-dimensional 
computing (HDC) [9] is rapidly emerging as an attractive alternative, 
broadening the opportunities for the development of systems that perform 
cognitive tasks in hardware [10–11]. HDC is based on the properties of 
hyper-dimensional spaces that could explain essential aspects of human 
perception and cognition. HDC encodes all data features to high-dimen-
sional vectors (hyper-vectors) and performs efficiently the classification 
task using a reduced set of well-defined operations [12–13]. It provides 
competitive accuracy on prediction tasks with a much smaller model size 
and training time than conventional ML. Therefore, it has shown promise in 
many applications, including data classification, which is the focus of this 
work. However, HDC comes with considerable memory requirements since 
every specific data should be stored in a very long vector using thousands 
of bits, which has motivated recent exploration of implementation alterna-
tives [14–15].

Moreover, the need for energy efficiency has motivated the exploration of 
alternative device technologies, such as resistive-switching (memristive) 
devices, which could store information in nonvolatile form using resistance 
values [16–17]. In fact, the main operation in the HDC domain involves 
manipulating large data patterns in memory. This highly memory-centric 
nature of HDC was the key motivation for the in-memory computing hard-
ware implementation proposed in [18] where memristive devices were used 
to locally implement logic operations [19]–20].

Likewise, in this work, we explore using memristive devices to imple-
ment one of the fundamental modules of an HDC system, the “associative 
memory” (AM). We base our proposal on previous work in [21], where 
single-layer memristive neural networks were used to implement AM struc-
tures. We designed and simulated an HDC system in MATLAB software 
using a behavioral model for memristive devices [22], also considered in 
[23] for developing digital emulators of memristive devices in hardware. 
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Here, we explore the performance of the HDC system in image classifica-
tion tasks, using different AM implementations to enrich the representation 
of the query image classes in the AM when they include up to 25% of noise. 
The simulation results also explore the impact of nonidealities of memris-
tive devices and demonstrate the critical system design aspects to consider 
in such an implementation approach, highlighting the computing capacity 
of HDC and the promising features delivered by emerging device technolo-
gies, aiming toward more robust and comprehensive implementations in 
digital hardware.

2  BASICS OF HYPERDIMENSIONAL COMPUTING

When HDC is used for classification tasks, hyper-vectors (HVs) are selected 
to represent every symbol in a dataset. The symbols could be the letters of the 
alphabet or the pixel positions within an image. HVs are the general comput-
ing elements. In every HV, its elements are randomly generated, they are 
independent and identically distributed (i.i.d.). Equation (1) shows a 
D-dimensional HV where hi stands for the element in position i within this 
vector.

	 HV h h hD= 〈 … 〉, , ,1 2 	 (1)

In the hyper-dimensional space, for instance using the dimension of D = 
10000, any two arbitrary HVs are nearly orthogonal and such quasi-orthogo-
nality of HVs enables HDC to represent and integrate information using a 
variety of simple operations, namely; multiplication, addition, and permuta-
tion. The multiplication (binding) is used to bind two HVs together, which is 
usually done using the bitwise XOR operation. The output HV is orthogonal 
to the HVs being bound. Moreover, the addition (bundling) is used to com-
bine different HVs into a single HV, which is similar to each component used 
in the bundling. The values in each element of the final HV are binarized 
using the majority sum operation (i.e., component-wise majority). Equation 
(2) and Equation (3) show the definition of the abovementioned fundamental 
operations over HVs. The computing output of both bundling and binding 
maintains the property of HVs. Finally, pseudo-random permutation (shift-
ing) is also applied, such as a circular shift, which aims at shuffling of the HV 
contents.

	 bundling HV HV h h h h h hi j i j i j iD jD, , , ,( ) = 〈 + + … + 〉1 1 2 2 	 (2)

	 binding HV HV h h h h h hi j i j i j iD jD, * , * , , *( ) = 〈 … 〉1 1 2 2 	 (3)
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Three main processes are required to establish an HDC model, named 
the encoding process, the training process, and the inference process. A 
fundamental component of an HDC model is the so called “Item Memory” 
(IM), created as follows: Every element in the input set of signals is ran-
domly assigned a HV and saved in the IM. For instance, each pixel position 
in an input image is assigned a unique seed HV. From an image with n 
pixels, n quasi-orthogonal seed HVs are randomly generated, which are 
stored in the IM and are kept during the training and inference phases of the 
classification.

Encoding is the process to represent a data sample in the hyper-dimen-
sional domain. Using the case of image again as an example, for the encoding 
of each pixel, HDC applies the binding operation to the corresponding seed 
HV with the HV corresponding to its value, as shown in Equation (4), to 
finally produce the HV of pixel position x:

	 HV binding HV HVpx seed x value x= ( ),, , 	 (4)

Next, the HDC encodes the entire image into a single image HV by applying 
bundling to all pixel HVs. During the training process, an HDC model is built 
over all the training samples to produce a prototype HV representing the 
entire class of category. For an m-class classification task, HDC first encodes 
each training sample image using the above-mentioned process. Eventually 
the system combines all encoded HVs in the training stage to form one HD 
vector representing each class. This information is stored in another funda-
mental module called “Associative Memory” (AM), whose essential function 
is to compare the incoming encoded query HV with the stored class HVs and 
return the closest class HV using appropriate similarity metrics. Both IM and 
AM represent HVs that are stored permanently in the memory.

Figure 1 shows an example of what an IM and an AM would look like, in 
this case representing digit patterns in 19 × 19-pixel images, assuming ten 
distinguishable image classes corresponding to the ten digits. It can be noted 
that each of the image pixels creates a HV within the IM. On the other hand, 

FIGURE 1
Example of an Item Memory and an Associative Memory created for ten image classes, repre-
senting the ten digits, concerning a dataset of images with 19 × 19 pixels
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each class is associated with its corresponding HV in the AM. Finally, the 
inference process is used to determine the class of a sample input image. 
HDC first encodes the query image into a query HV following the same 
encoding strategy, which will be compared with all the class HVs to find the 
predicted class which demonstrates maximum similarity. To reveal the rela-
tionship between any two HVs, HDC utilizes the Hamming distance metric 
to measure their similarity. This comprises two phases, first a bitwise XOR 
operation followed by counting the resulting ones. If the Hamming distance 
between two HVs is close to 0, it means that the two HVs are highly corre-
lated/similar. Eventually, the index of the class HV with the lowest Hamming 
distance indicates the prediction result.

3 � DETAILS OF THE SIMULATION SETUP AND SYSTEM  
DESIGN METHODOLOGY

In this work we study the problem of binary image classification using a 
developed dataset with 19 × 19-pixel images, presenting the ten digits but 
with different levels of noise. There are a total of 6260 images including the 
10 original images with 0% noise. It is important to define that noise is intro-
duced with the random selection of a percentage of pixels in the original 
image to perform a flip on their value. An example of the type of images 
found in our dataset is shown in Figure 2. The system design and simulation 
was performed in MATLAB software (ver. R2024a). For the image classifica-
tion system, the fundamental operations that make up a HDC system are first 
implemented. The IM is generated, whose main function is to act as a tem-
plate to map the input information to the hyper-dimensional domain, yielding 
as output the image characteristics represented by the HVs. The number of 

FIGURE 2
Samples of the 19 × 19 images of the dataset used in this work: (a) without noise and (b) with 
15% of noise
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HVs stored in the IM is equivalent to the size of the image. It is important to 
note that only one IM should be created and kept fixed during system opera-
tion/simulation. The size of the IM depends on the size of the image (number 
of pixels) and the number of dimensions of the HVs, where we have consid-
ered D = 1000. For images with p pixels and HVs with D dimensions, the size 
of the IM will be p × D bits. For a 19×19-pixel image, it is p = 361. Likewise, 
the AM module is generated through the training process with samples of all 
the m different classes of data. Consequently, the AM will be formed by m 
HVs and its total memory size is m × D bits.

The IM is implemented using a MATLAB dictionary with 361 entries, one 
for each pixel of the 19 × 19 images, and 361 random HVs are created that are 
linked to each of the dictionary keys. In an analogous manner, the AM is 
generated for the 10 classes, which is subsequently trained and finally used 
for the inference phase. Finally, a similarity search must be performed within 
the AM. Figure 3 summarizes the operation of the encoder. The permutation 
is implemented through shifters that perform a shift only if the corresponding 
pixel has a value of 1, otherwise it remains as it is in the IM. Then, the bun-
dling operation is performed. For the 361 HVs, all the bits in the first position 
of each HV must be added and if the sum is greater than 50% of 361, then the 
output value in that bit is 1. This is repeated with all the bit positions of the 
HVs until a single output HV (HVOUT) is formed.

We evaluated the performance of a HDC model implemented in software 
with D = 1000 dimensions. For the creation of the AM, the system was trained 
with a noise-free reference image for each class, while for the inference, the 
query images were randomly selected from the dataset and could include 
noise. The simulation results are summarized in Figure 4 where we note that 
with up to 12% noise in the query images, the classification accuracy remains 
at 100%. As the noise increases up to 25%, the classification accuracy 
decreases. However, the minimum achieved accuracy is 96%, which shows 
that the software implementation of the HDC model operates correctly and 
will serve as a reference for the performance tests that follow in the rest of 
this work.

FIGURE 3
Block diagram exemplifying the operation of the encoding module within an HDC system
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To define the number of dimensions to be used for the HVs, we evaluated the 
performance of the HDC system by varying the number of dimensions 
between 500 and 10000, considering a fixed noise percentage in all the query 
images. Our analysis showed that for D ≥ 1000, the maximum classification 
accuracy was always achieved. Such results justify the use of D = 1000 in our 
simulations, to limit the demand on memory resources to the minimum 
acceptable level that guarantees the successful operation of the system.

In the following sections we explain how different topologies of interest 
were assumed to build the associative memory module, particularly exploit-
ing the technology of memristive devices. More specifically, our software 
implementation uses the concept of digital emulation of memristive devices 
according to [23], where it was shown that there is an equivalence between a 
behavioral mathematical model of memristors published in [22] and its 
potential implementation/execution in digital hardware. For each different 
topology to be evaluated, the performance is compared and analyzed based 
on the metrics of interest, which include the accuracy of the classification 
result, the tolerance to the variability that memristive devices may present, 
and also the ability to correctly classify the input query images when they 
include up to 25% noise.

4 � DESIGN OF A MEMRISTIVE ASSOCIATIVE MEMORY  
FOR HDC MODELS

Here we present the design of an associative memory (AM) module based on 
memristive  devices (or memristors [24]), which are two-terminal bipolar 
resistive-switching devices whose resistance can be modified by the applica-

FIGURE 4
Simulation results showing the classification accuracy percentage of the HDC system in software 
for different levels of noise incorporated in the 19 × 19-pixel query images randomly chosen from 
the dataset. The values of specific datapoints are highlighted in the curve for readability reasons
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tion of voltage pulses that generally exceed certain threshold values. We 
shortly present a mathematical model of a voltage-controlled memristive 
device proposed in [22], which was also used in [23] to achieve the digital 
emulation of such devices. Normally, models of such devices use at least two 
equations. One of them is shown in Equation 5 which is the state-dependent 
Ohm’s law. i(t) is the current through the device and v(t) the voltage across its 
terminals, whereas R is the device resistance (memristance), which here repre-
sents the only state variable. The second necessary equation is shown in Equa-
tion 6 and reflects the rate of change of the state variable R, whose values are 
bounded by the parameters RON and ROFF. Moreover, vT is the threshold volt-
age that determines when the applied voltage is high enough to induce a 
change in the value of R. The process of decreasing the resistance is known as 
SET, while the opposite process is known as RESET. The constants α and β 
have a direct effect on the rate of change of R. Finally, θ(⋅) is the step function.

	 i t R v t( ) = ⋅ ( )−1 	 (5)

	 R v v v v v R R R RT T ON OFF= ⋅ + ⋅ −( )⋅ + − −( )⋅ −( )⋅ −( )β α β θ θ
1

2
	 (6)

Asymmetric thresholds can be used for the SET and RESET processes, i.e. 
have vT,SET different from |vT,RESET|. Moreover, it is possible to define differ-
ent variables β for the SET and RESET processes, and thus control the rate of 
change independently for each process via βSET and βRESET. Variability could 
also be added to the parameters to simulate non-idealities of physical mem-
ristive devices.

Figure 5 shows the general form of Equation 6, where it is important to 
note that there are three zones derived from the expansion of the equation 
itself. Zone 1 corresponds to the case when the voltage on the memristive 
device does not exceed any of the switching thresholds, so only parameter α 
will influence the switching rate if α ≠ 0. Zone 2 (RESET zone) corresponds 
to the case when the applied voltage exceeds the negative threshold, whereas 
zone 3 (SET zone) corresponds to the case when the applied voltage exceeds 
the positive threshold value.

To corroborate the operation of the model according to the abovemen-
tioned equations in MATLAB, a memristive device was simulated with the 
following values for its parameters: α = −0.1GΩ/(V∙s), βSET = −3GΩ/(V∙s), 
βRESET = −1GΩ/(V∙s), vT,SET = 1.5V, vT,RESET = −0.5V, ROFF = 10KΩ, RON = 
1KΩ, with initial state RINIT = 5KΩ. The device was subjected to a train of 
voltage pulses 10ns-wide. Different amplitude values were used to cover all 
cases, being lower or higher than the threshold values. The positive pulses 
were selected with 1V and 2V amplitude, whereas the negative pulses had 
−0.25V and −1.5V amplitude, respectively. In MATLAB, simulation advances 
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FIGURE 5
Example of the possible form of Equation 6 which describes the memristance change rate as a 
function of the applied voltage. The vertical dashed lines are a guide to the eye denoting possible 
values for the SET and RESET thresholds. The inset shows the symbol of a memristive device. 
Zones 2 and 3 correspond to the RESET and SET, respectively

FIGURE 6
Flow chat showing the steps involved in the digital simulation of memristive devices in MAT-
LAB

in user-defined timesteps Δt. Figure 6 shows the flowchart for the digital 
emulation of a memristor in a MATLAB environment, according to guide-
lines in [23] where the authors implemented the same mathematical model 
postulated in [22] within a Field Programmable Gate Array (FPGA) and its 
execution advanced in discrete time steps, defined as multiples of the system 
clock period. In our case, using a high-level modeling language such as 
MATLAB, we seek an approximation equivalent to such implementation.

The simulation results are presented in Figure 7. First, when having an input 
voltage of 0V it can be noticed that the memristance does not change. Then, 
when applying a positive pulse of 1V, which is lower than vT,SET, a decrease of 



228	 Kevin Pizarro and Ioannis Vourkas

20Ω in the memristance can be noticed. When applying positive pulses of 2V a 
much more drastic decrease of the memristance can be noticed (60Ω), which is 
because the parameter βSET affects the rate of change. Likewise, similar changes 
can be seen for negative pulses whose values fall below or above the vT,RESET 
threshold. Finally, by keeping the applied voltage at 0V, the device maintains its 
last memristance value, demonstrating the desired nonvolatility.

The implementation of associative memory (AM) with memristive devices 
is one of the fundamental concepts within this work. Figure 8 shows, in gen-
eral terms, the topology of an N-input single layer neural network, known as 
“perceptron”, which implements a linear classifier used in supervised learn-
ing tasks. Perceptron has two fundamental elements. The first is the synaptic 
connections, represented directly by the memristive devices with their con-
ductance Gi (with i from 1 to N), which defines the weight of the connection 
between two neurons. The second element is the neuron Ni represented sym-
bolically with a triangle in the schematics shown in this work.

FIGURE 7
Simulation results for a memristive device submitted to a voltage pulse train. (a) the applied volt-
age. (b) the evolution of the memristance over time. Several data points are highlighted as a guide 
to the eye to improve readability

FIGURE 8
Schematic diagram of a perceptron circuit with N input neurons and one single output neuron. 
Synaptic connections between neurons are represented by the conductance of the memristive 
devices Gi.
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Here we base our work on [21] where it was demonstrated that a percep-
tron can implement an associative memory (AM). In such topology, a strong 
connection corresponds to a memristive device in low resistance (low resis-
tive state – LRS, or RON), whereas a weak connection corresponds to a high 
resistance (high resistive state – HRS, or ROFF). Using a perceptron, having a 
strong connection only with the input where a reference signal is applied, it is 
possible to achieve the emergence of other strong connections during learn-
ing when different input signals are applied simultaneously with the refer-
ence signal, thus achieving the “association” of the different types of signals. 

Moreover, according to [21], the operation of the simulated neurons has 
three fundamental states: the IDLE state, the EXCITED state, and the 
REFRACTORY state. The general behavior of the simulated neuron can be 
described using a state diagram as in Figure 9. Within the configuration 
parameters in the implementation of the neuron module we assume the rest-
ing time (IDLE_TIME) and the synaptic period (SYNAPSE_TIME). The 
IDLE_TIME indicates how long the neuron will be in the refractory period. 
Depending on the state in which the neuron is and on the input stimulus, an 
action potential (output voltage) could be triggered. However, when in the 
refractory period, even if there is a strong stimulus at the input, the neuron 
will not trigger an action voltage pulse. On the other hand, the SYNAPSE_
TIME defines how long the neuron’s output will remain high.

Each neuron starts in IDLE state, and awaits a stimulus that is greater than 
its activation threshold voltage VT (VT,NEURON) to transition to the EXCITED 
state. While at rest, the output voltage will be 0V. In the EXCITED state, the 
neuron output takes a value of 1V and remains in this state during SYN-
APSE_TIME. Finally, in the REFRACTION state there is also 0V at the out-
put. However, even if there is an input voltage greater than the activation 
threshold, the output remains at 0V. The neuron remains in the REFRAC-
TION state during IDLE_TIME, which here we define according to [21].

FIGURE 9
State diagram for the operation of a simulated neuron. Arrows reflect all possible state transi-
tions, under the conditions described in text next to each arrow
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Simulation results demonstrating the operation of the neuron model consid-
ered in this work, are presented in Figure 10. At first, when the input voltage 
is lower than the activation threshold the neuron remains in IDLE state and 
its output is at 0V. When the input voltage slightly exceeds the activation 
threshold, the neuron reacts passing through the IDLE, EXCITED and 
REFRACTION states continuously. In the EXCITED state, a voltage of −1V 
is forced on the input node of the neuron, something that will be necessary 
in the training/learning phase of the memristive associative memory mod-
ules evaluated in this work (not shown in the figure). Finally, when the input 
voltage is even higher than the activation threshold, the time that the neuron 
remains in the REFRACTION state is much shorter, thus responding at a 
much higher frequency.

5 � A HYPERDIMENSIONAL COMPUTING SYSTEM FOR  
IMAGE CLASSIFICATION 

For the design and simulation of an image classifier based on HDC, the flow 
of operations shown in Figure 11 was considered. The associative memory 
(AM) module certainly is a key point to consider while exploring implemen-
tation alternatives that could improve or enrich the system´s performance.

In this work we seek to take advantage of the nature of memristive devices 
to propose an alternative implementation of the AM module within an HDC 
system. To better understand the steps to follow in the simulation of the sys-
tem and the different phases of operation, the process flow in Figure 12 is 
presented. The simulation starts by reading the dataset of images needed in 

FIGURE 10
Simulation results showing the response of a neuron. (top) the applied input voltage. (bottom) 
the voltage at the output node of the neuron. The horizontal dashed line denotes the activation 
threshold of the neuron. (middle) a color map showing the evolution of the states of the neuron 
over time. Three scenarios are assumed: (1) when the input voltage cannot activate the neuron. 
(2) when the input voltage slightly exceeds the activation threshold. (3) when the input voltage 
is significantly higher than the activation threshold
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posterior stages. Given the defined parameters, both for the modules of the 
HDC system and for the memristive devices, the item memory (IM) is created 
and the AM is initialized with the instantiation of the perceptrons.

The training phase comes next, which aims to induce learning in each one 
of the perceptrons denoted as Pi (with i from 0 to 9), one for each existing 
class in the image dataset. It is important to note that the duration of the train-
ing for each perceptron depends on the number of dimensions of the HVs. 
The content of the HVs is processed serially and for each element (bit) of the 
HV a voltage pulse is applied to the perceptron inputs. After the perceptrons 
have been trained, the inference/classification phase begins where all the per-
ceptrons must be used for every query image to be classified. This task could 
eventually exploit the parallelism in dedicated hardware implementations for 
fast execution, which however is out of the scope of this work. The two-input 
perceptron (HDC P2) is used as the base topology, whose performance we 
study below.

In the training phase, one of the perceptron inputs (INREF) receives the HV 
representing a noise-free reference image, whereas the other input (INTRAIN) 

FIGURE 11
Diagram describing the overall flow of operations for image classification/inference with an 
HDC model.

FIGURE 12
Flow chart showing the steps involved in the simulation of an HDC system for image classifica-
tion in MATLAB
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receives the HV representing a randomly chosen image of the same class. In 
the initial configuration of the system, the synaptic connection with the INREF 
input is strong, whereas the synaptic connection with the INTRAIN input is 
weak (RTRAIN in HRS), and the objective of this process is precisely to 
strengthen the weight of this connection by bringing the RTRAIN resistance 
towards its RON limit value. At any given time, both the applied input signals 
will be contributing to the calculation of the voltage at the common node of 
the synaptic connections, which is the input node of the output neuron. How-
ever, the connection with the INREF input is stronger and therefore this signal 
has a greater contribution in the activation of the output neuron. The process 
can be better understood by observing Figure 13 which shows a case where 
the same reference image is applied to both inputs of the perceptron during 
the training/learning phase.

When the output neuron is activated, in the next timestep, a voltage of −1V 
is forced on its input node. For this reason, if a 1V pulse is applied to the 
INTRAIN input, then the voltage drop across the memristor with resistance 
RTRAIN becomes equal to 2V and exceeds its SET threshold, causing its resis-
tance to decrease. To achieve the behavior described above, the parameter 
values of the neurons and the memristive devices must be appropriately cho-
sen. In this case, we defined vT,SET = 1.5V and vT,RESET = −0.5V, and the 
neurons were configured with an activation threshold VT,NEURON = 0.5V. The 
output voltage of the neurons takes values of 0V or 1V to be consistent with 
the content of the binary HVs. We also define RON = 100Ω and ROFF = 10KΩ, 
a range that has often been observed in commercially available devices [20], 
[25], as it also happens with the case of asymmetric thresholds where vT,SET 
is here selected greater than |vT,RESET|. Finally, the rate of change of the mem-
ristance must be defined through the parameters α, βSET and βRESET. Here we 
chose the rate of change to be symmetric for SET and RESET, unless stated 
differently, with βSET = βRESET.

In the classification stage, the INTRAIN input now becomes the INQUERY 
input where the applied HV represents the image to be classified. At the same 
time, the HV of an empty image, i.e. an image whose pixels all have zero 
value, is applied to the INREF input. This situation is presented in Figure 14. 
Under these conditions, and assuming a successful previous training, both 

FIGURE 13
Diagram exemplifying the training/learning phase for a perceptron with two inputs. The connec-
tion where the reference signal is applied is strong (LRS) whereas the connection with the other 
neuron is initially weak (HRS)
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synaptic connections are strong with the resistance of the memristive devices 
in LRS at a value close to RON, and therefore both have the same weight in the 
contribution to the voltage at the input node of the output neuron. In this way, 
the activation of the output neuron will depend on the pulses applied at the 
INQUERY input.

With the introduction of a memristive AM module, the composition of the 
designed HDC system can be redefined as presented in Figure 15, where the 
AM module is shown to include a total of 10 perceptrons, one for each class 
present in the image dataset. However, in order to combine information from 
several different images and achieve a better representation of each class in 
the AM of the HDC system, an alternative strategy explored in this work 
consists in using perceptrons with more than 2 inputs.

More specifically, the possibility of having 4 inputs was evaluated, whose 
synaptic connections were trained based on images with different levels of 
noise in order to broaden the grade of representation of each class. In particular, 
the noise levels used were 0% (equivalent to a clean image), 5%, 10% and 15%. 

FIGURE 14
Diagram exemplifying the classification phase for a perceptron with two inputs. The connection 
where the reference signal is applied is by default strong (LRS) but the same occurs for the con-
nection with the query input after successful learning.

FIGURE 15
Diagram describing the overall flow of operations for image classification/inference with an 
HDC model, where the design of the memristive associative memory module is particularly 
highlighted, based on 2-input perceptrons
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Figure 16 shows the diagram of the 4-input perceptron using memristive 
devices, where the training inputs correspond to images with different percent-
age of noise. For the training phase, initially the synaptic connection of the 
INREF input is always strong (LRS), whereas all the other connections are weak 
(HRS). As for the neurons, all the parameters determined previously are main-
tained. It cannot be overlooked that those input neurons whose HVs correspond 
to images with lower levels of noise are more likely to be stimulated simultane-
ously with the reference input (or noise-free input), and therefore get the cor-
responding memristive devices toward LRS values closer to the RON limit. We 
generally expect that the resistance of the memristive devices at the end of the 
training period, would be of the form R1 ≤ R2 ≤ R3 ≤ R4, where R1 is RREF and 
R4 is the connection with the input where the applied signals represent the 
noisiest images (15%).

FIGURE 16
Diagram exemplifying the training/learning phase for a perceptron with four inputs. The connec-
tion where the reference signal is applied is strong (LRS) whereas the connection with the other 
neurons is initially weak (HRS)

FIGURE 17
Diagram exemplifying the classification phase for a perceptron with four inputs. The connection 
where the reference signal is applied is by default strong (LRS) but the state of the rest of the 
synaptic connections depends on the previous learning process. As an example, here only 2 of the 
3 training memristive devices are shown in LRS
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For the inference phase in such extended perceptron topology, the process 
is very similar to the case with the two input perceptrons. As shown in  
Figure 17, the reference input image represents an empty image, whereas 
the other three inputs receive the same HV that represents the image to be 
classified. Thus, the strongest connections are expected to predominate in 
the activation of the output neuron.

Following the same strategy, it is possible to use perceptrons with as many 
inputs as necessary. Considering that the image dataset includes images with 
up to 25% of noise, in our analysis we included the case of an AM based on 
perceptrons with 6 inputs where HVs of images with 0%, 5%, 10%, 15%, 
20% and 25% noise were applied. The operation in the training and inference 
phases is the same as that described previously for the case of 4 inputs.

The last process of the HDC system to be described is the similarity 
search, which is necessary in the classification stage. Figure 18 shows a dia-
gram that explains the operations that make up the similarity search and the 
way in which the module is connected to the AM. The query image informa-
tion is passed through the encoder to obtain HVOUT. Then, HVOUT is passed 
as input to each perceptron of the AM for inference, thus obtaining the HVs 
denoted as OUTX (with x from 0 to 9) which must then be compared with the 
HVs that were obtained from the training phase (TRAINEDX). To this end, a 
bitwise XOR operation is performed between TRAINEDx and OUTx with the 
result reflected in HV_COMPx. This process is repeated for each pair of 
TRAINEDX - OUTX. Subsequently, all the bits of each HV_COMPX are 
added to obtain the number of bits in which the TRAINEDX - OUTX pairs 
differ (simX). Finally, all simX values are compared and that with the lowest 
value corresponds to the inferred class.

FIGURE 18
Diagram describing the overall flow of operations for similarity search between the query image 
and the contents of AM (trained HVs), within an HDC system used for image classification/
inference. The connections between the similarity search module and the memristive AM mod-
ule (here appearing with 2-input perceptrons) are highlighted
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6  SIMULATION RESULTS 

Through different configurations of the memristive devices, we explore the 
performance of the HDC system and the impact produced by the different 
switching rates of the devices to the effectiveness of the training/learning 
phase of the AM. We particularly focus on the asymmetric nature of the SET 
and RESET processes, related to the learning and forgetting rates that are 
occurring during training. Moreover, we assess the effect produced by the 
non-idealities of the memristive device technology, such as the variability of 
the SET/RESET thresholds, among others. The simulations were carried out 
for D = 1000 dimensions and 25 iterations of each experiment, using a total 
of 250 images with 10% noise in the inference phase. That is, 25 different 
images for each digit with 10% of pixels altered.

6.1  Impact of asymmetric switching rates on learning performance 
We simulated the behavior of a perceptron with four inputs during the 
training phase. The simulation lasted 10μs, since D = 1000 and the applied 
pulse for every HV element was 10 ns wide. The memristive device that 
corresponds to the input where the reference signal was applied was the 
only one initialized in LRS. The other inputs receive the HVs that repre-
sent images with 5%, 10% and 15% noise, respectively. In Figure 19 we 
observe the results for the case where the learning rate is greater than the 
forgetting rate. The values used were α = −10KΩ/(V∙s) and βRESET = 
−5GΩ/(V∙s) in the three simulated cases, but the value of βSET varied with 
values −10, −15, and −20GΩ/(V∙s). It can be noted that the higher the 
value of βSET, the better the training result since it is guaranteed that a 
greater number of memristive devices reach their LRS, thus improving the 
classification precision.

Similarly, the behavior of the same perceptron was evaluated when the 
learning rate was lower than the forgetting rate during training. In practical 
terms, this means that a negative voltage on the memristive devices could 

FIGURE 19
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when (a) βSET = −10GΩ/(V∙s), (b) βSET 
= −15GΩ/(V∙s), and (c) βSET = −20GΩ/(V∙s). In every case the best achieved classification accu-
racy for digit 0 with 10% of noise in the query images during inference, is informed in the inset. 
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cause a significant increase in their resistance, thus nullifying the previously 
acquired training result. The parameters that were kept fixed in each simula-
tion are α = −10KΩ/(V∙s) and βSET = −15GΩ/(V∙s), whereas βRESET varied 
taking the values −20, −25, and −35GΩ/(V∙s). In the simulation results shown 
in Figure 20 we notice that, the higher the value of βRESET, the worse the 
training process is, since the memristive devices do not manage to completely 
switch to their LRS. Consequently, the classification accuracy gets signifi-
cantly worse (see inset). We repeated the same process for the case of a 
6-input perceptron, this time using images with up to 25% noise. For the case 
where the learning rate was higher than the forgetting rate during the training 
period, we kept the same value of βRESET in the three cases while varying the 
value of βSET. In the simulation results of Figure 21 we observe that the 
higher the value of βSET, the better the training result and the more effective 
the classification process. All in all, the same trends as observed previously in 
Figure 19 are also present here for the 6-input perceptron.

Finally, for the case where the learning rate is lower than the forgetting 
rate during training, more dispersed curves were obtained as it can be seen in 

FIGURE 20
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when (a) βRESET = −20GΩ/(V∙s), (b) 
βRESET = −25GΩ/(V∙s), and (c) βRESET = −35GΩ/(V∙s). In every case the best achieved classifica-
tion accuracy for digit 0 with 10% of noise in the query images during inference, is informed in 
the inset

FIGURE 21
Simulation results showing the average memristance evolution over time for all the synaptic  
connections of a perceptron with six inputs during training, when (a) βSET = −10GΩ/(V∙s), (b) 
βSET = −15GΩ/(V∙s), and (c) βSET = −20GΩ/(V∙s). In every case the best achieved classification 
accuracy for digit 0 with 10% of noise in the query images during inference, is informed in the 
inset
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the results shown in Figure 22, similar to the results shown previously in 
Figure 20 for the case of a 4-input perceptron. The higher the value of βRESET, 
the worse the training process is and the classification accuracy decreases 
substantially.

Everything considered, the most important conclusion of this exploration 
is that there are several configurations of the memristive devices that give 
positive results, i.e. where the achievable precision of classification is higher 
than 90%. To obtain such results, it is important to achieve a decrease in the 
resistance value of the memristive devices of the trained synaptic connections 
toward values close to the RON limit. However, our analysis showed that this 
is necessary to occur with at least one of the devices in the case of a 4-input 
perceptron, or at least two memristive devices when the perceptrons have 6 
inputs.

6.2 � Impact of nonidealities of memristive devices on learning 
performance

Real memristive devices show considerable variability in their switching behav-
ior [26], unlike the ideal behavior considered so far in simulations. For this rea-
son, in order to obtain more reliable simulation results, in this section we 
evaluate the response of the system in presence of variability in the memristive 
devices. One of the model parameters that can be considered to introduce vari-
ability is the threshold values for the SET and RESET processes. The parameter 
values used in the ideal scenario are vT,SET = 1.5V and vT,RESET = −0.5V, taking 
into account that a voltage of 2V is applied for SET and a voltage of −1V is 
applied to the memristive devices for RESET. Therefore, it makes sense to con-
sider variations for both SET and RESET thresholds that allow to observe the 
effect of variability without risking to nullify the SET and RESET processes, 
making sure that the applied voltage for SET and RESET will always be higher 
than the threshold even in the extreme cases of variability. In this context,  
we explore the response of the system in the most and the least favorable  

FIGURE 22
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with six inputs during training, when (a) βRESET = −20GΩ/(V∙s), (b) 
βRESET = −25GΩ/(V∙s), and (c) βRESET = −35GΩ/(V∙s). In every case the best achieved classifica-
tion accuracy for digit 0 with 10% of noise in the query images during inference, is informed in 
the inset
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conditions for learning, comparing them with the nominal case (the case without 
variability). 

We simulate the behavior of a perceptron with four inputs during the train-
ing phase. Three scenarios are considered: the worst case, the nominal case, 
and the best case. The worst case is where incomplete training is observed, 
which is achieved with vT,RESET = −0.25V and vT,SET = 1.75V since the effect 
of the forgetting rate is maximized and the effect of the learning rate is mini-
mized. Similarly, for the best case where early learning is achieved during the 
training period, the learning rate is maximized and the forgetting rate is min-
imized with vT,RESET = −0.75V and vT,SET = 1.25V. In the results shown in 
Figure 23 it can be seen that varying the threshold voltages in the model used 
for the memristive devices has the same effect as modifying the parameters 
βSET and βRESET, which determine the rate of variation of the resistance, and 
therefore, the speed with which the perceptron can be trained. This kind of 
exploration provides results which allow the system designer to evaluate the 
worst scenario for such HDC system, given an initial configuration for it, to 
further examine whether it is necessary to modify the training time or change 
the amplitude of the applied pulses during training to achieve better classifi-
cation performance.

Another of the model parameters that can be considered for applying vari-
ability is the limiting resistance value reachable during SET and RESET, i.e. 
RON and ROFF. In this way, the possibility of having devices whose high or low 
resistance state does not correspond to a fixed value, but instead to a variety of 
similar values is considered. However, for the result of the classification pro-
cess, what determines the behavior of the system is the degree to which each 
memristive device has approached the RON resistance. Consequently, we per-
form simulations where we use a fixed ROFF but where the RON value varies 
within specific margins. We define the rest of the simulation parameters as  
D = 1000, we apply 10% image noise, α = −10KΩ/(V∙s), βSET = βRESET = 

FIGURE 23
Simulation results showing the average memristance evolution over time for all the synaptic con-
nections of a perceptron with four inputs during training, when extreme values were considered 
for the threshold parameter as follows: (a) vT,RESET = −0.25V and vT,SET = 1.75V, (b) vT,RESET = 
−0.5V and vT,SET = 1.5V, and (c) vT,RESET = −0.75V and vT,SET = 1.25V. In every case the best 
achieved classification accuracy for digit 0 with 10% of noise in the query images during infer-
ence, is informed in the inset
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−24GΩ/(V∙s), vT,SET = 1.5V, vT,RESET = −0.5V, ROFF = 10KΩ, and initialize the 
memristive devices with R1 = RON, RX = ROFF (with x = {2, 3, ..., 6}). We 
consider 2-input, 4-input, and 6-input perceptrons and vary the RON value 
with respect to the nominal value. R1 refers to the memristive device of the 
reference input, whereas RX refers to the memristive devices of the rest of the 
perceptron inputs.

Table 1 shows a summary of the simulation results. It can be noted that the 
impact of the theoretically worst case where it is R1,ON < Rx,ON (this forces the 
training memristive devices to achieve LRS values higher than that of the 
reference LRS value) is clearly observed for the HDC system whose AM 
used 2-input perceptrons (HDC P2). However, by including more inputs in 
the perceptron circuits, robustness to the difference between R1,ON and Rx,ON 
is gained. In particular, the average classification accuracies were higher for 
the case of 6-input perceptrons (HDC P6), followed by the 4-input perceptron 
case (HDC P4), and finally by the implementation with HDC P2.

6.3 � Impact of HV dimensions and of query image noise on  
classification accuracy

One of the essential tests when working with the HDC paradigm is to observe 
the performance of the system as the number of dimensions for each HV 
increases. In this direction, Figure 24 shows the simulation results for the 
cases where the AM module used perceptrons with 2 (HDC P2), 4 (HDC P4), 
and 6 (HDC P6) inputs, compared to the original implementation of the sys-
tem without considering the use of memristive associative memory (HDC). 
The classification of a total of 250 images with 10% noise was again pursued. 
It can be noted that, among the three variations under test for the AM module, 
the HDC P2 presents the worst results, whereas HDC P4 and HDC P6 have 
practically identical curves. Interestingly, both HDC P4 and HDC P6 achieve 

LRS Limit Memristance Value Average HDC Classification Accuracy

R1,ON (Ω) RX,ON (Ω) HDC P2 (%) HDC P4 (%) HDC P6 (%)

100 250 10 69.2 94

60 140 10 94.4 94.8

85 115 10 92.8 94

100 100 82.4 94.8 94.8

115 85 94 93.6 95.2

140 60 94 93.2 95.6

250 100 94 93.2 95.6

TABLE 1
Summary of average achieved classification accuracy for different implementations of the asso-
ciative memory when different values were assumed for the RON parameter of the memristive 
devices
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a classification accuracy that exceeds 99% for D ≥ 3000. The observed differ-
ence in the performance of HDC P2 compared to the other two alternatives 
suggests that, when aiming to implement a robust classification system, it is 
necessary to consider noisy information in the training phase, thus more 
inputs in the memristive perceptron circuits. It is also intuitive to think that, 
with a larger number of dimensions used in the HVs, the need for hardware 
resources will increase, so there is a trade-off between the requirement for 
resources and the minimum desirable accuracy in the performance of the 
designed HDC system.

One of the most important and widely-documented characteristics of HDC 
is its robustness to noise. Therefore, as a final test in this study, we observed 
and analyzed the system´s performance depending on the noise levels present 
in the input images to be classified. We chose a fixed number of dimensions 
D = 1000 while varying the noise level present in the query images from 0% 
to 25% with a step of 1%. We performed 25 repetitions of the experiment for 
each noise level. The simulation results are shown in Figure 25. We observe 
that the proposed topologies that make use of perceptron-based associative 
memory demonstrate an earlier decrease in their performance and at a higher 
rate, compared to the original HDC implementation. It can be noted that 
HDC P2 is the implementation that shows the worst results, which can be 
explained by the fact that its training/learning was performed using only 
clean images without noise. On the other hand, the systems using HDC P4 
and HDC P6 were trained with noisy images, together with a clean reference.

FIGURE 24
Simulation results for the average classification accuracy achieved for query images with up to 
10% noise, comparing the original software implementation of HDC with the three alternatives 
considered for the AM module using perceptrons with 2 (HDC P2), 4 (HDC P4), and 6 (HDC 
P6) inputs
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It should be noted that in the case of HDC P4, images with up to 15% 
noise were used in training, whereas for HDC P6 the noise considered in the 
images during training reached 25%. This explains the fact that in the graphs 
of Figure 25 we notice a similar behavior between both for up to approxi-
mately 15% of image noise. From this point on, the performance of HDC P6 
slightly exceeds that of HDC P4, achieving a 5% improvement in classifica-
tion accuracy when the query images had the maximum amount of noise. It 
can also be observed that the accuracy of the original HDC implementation 
varies only between 95% and 100%, and that a slight decrease is observed 
only when the image noise exceeds 13%. In general, this HDC implementa-
tion demonstrates the best performance, which underlines the capacity of the 
HDC concept to be used in classification tasks.

CONCLUSIONS

Through supervised learning at circuit level, this work explored the design and 
implementation of associative memory modules for HDC systems based on 
memristive perceptron circuits. The proposed implementations fit seamlessly 
in the definition of an HDC system for classification tasks and performed well, 
compared to the original software implementation of a “pure” HDC. Never-
theless, the idea of expanding the number of inputs of the memristive percep-

FIGURE 25
Simulation results for the average classification accuracy achieved for query images with up to 
25% noise, comparing the original software implementation of HDC with the three alternatives 
considered for the AM module using perceptrons with 2 (HDC P2), 4 (HDC P4), and 6 (HDC 
P6) inputs



	D esign and Simulation of a Hyperdimensional Computing System	 243

trons to achieve a better representation of the image dataset classes led to 
better results, underlying the importance of considering this in potential 
implementations in hardware (HW). The simulation of memristive devices 
followed an approach compatible with execution in digital HW, so the pro-
posed circuits could be considered for future HW accelerators of HDC classi-
fiers. Still, the performance of the designed system could not exceed that of the 
pure software HDC implementation. However, further optimizations are pos-
sible, and a larger number of inputs in the perceptron circuits could decrease 
the performance gap. Moreover, such memristive associative memory, if 
implemented in HW, could certainly exploit parallelism of execution, and thus 
lead to very efficient, low-energy implementation.
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