Bonding Characteristics of Selected Liquid-Metals with a CO2 Laser Treated Magnesia Partially Stabilised Zirconia Bioceramic
J. Lawrence and L. Hao
Following CO2 laser treatment, the surface of a magnesia partially stabilised zirconia (MgO-PSZ) bioceramic found to exhibit improved bonding characteristics through an increase in the work of adhesion. An electronic approach was used to elucidate the bonding characteristics of the MgO-PSZ bioceramic before and after CO2 laser treatment. It is postulated that CO2 laser induced changes to the MgO-PSZ bioceramic produced a surface with a reduced bandgap energy which consequently increased the work of adhesion by increasing the electron transfer at the metal/oxide interface and thus the metal-oxide interactions. Furthermore, it is suggested that the increase in the work of adhesion of the MgO-PSZ bioceramic after CO2 laser treatment was due to a correlation existing between the wettability and ionicity of the MgO-PSZ bioceramic; for it is believed that the CO2 laser treated surface is less ionic in nature than the untreated surface and therefore exhibits better wettability characteristics.