Inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cells is ROS-dependent
Dorrah Deeb, Xiaohua Gao, Yong Bo Liu and Subhash C. Gautam
Oleanolic acid-derived synthetic triterpenoids are broad spectrum antiproliferative and antitumorigenic agents. In this study, we investigated the role of reactive oxygen species (ROS) in induction of apoptosis and inhibition of prosurvival Akt, NF-κB and mTOR signaling proteins by methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic cancer cells. Micromolar concentrations of CDDO-Me inhibited proliferation and induced apoptosis in MiaPaCa-2 and Panc-1 pancreatic cancer cells. Treatment with CDDO-Me caused the generation of hydrogen peroxide and superoxide anion and pretreatment of cells with NADPH oxidase inhibitor diphylene iodonium (DPI) or respiratory chain complex 1 inhibitor rotenone prevented ROS generation. Pretreatment with N-acetylcysteine (NAC) or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the antiproliferative effects of CDDOMe. Likewise, NAC prevented the induction of apoptosis (annexin V-FITC binding and cleavage of PARP-1 and procaspases-3,-8 and -9) and reversed the loss of mitochondrial membrane potential and release of cytochrome c from mitochondria by CDDO-Me. CDDOMe down-regulated p-Akt, p-mTOR and NF-κB (p65) but increased the activation of Erk1/2 and NAC blocked the modulation of these cell signaling proteins by CDDO-Me. Thus, the results of this study indicate that the antiproliferative and apoptosis inducing effects of CDDO-Me are mediated through a ROS-dependent mechanism and the role of ROS in modulation of signaling proteins by CDDO-Me warrants further investigation.
Keywords: Pancreatic cancer, CDDO-Me, apoptosis, ROS, Akt, NF-κB, mTOR, Erk1/2