End-To-End Delay Modeling for Mobile Ad Hoc Networks: A Quasi-Birth-and-Death Approach
Juntao Gao, Yulong Shen, Xiaohong Jiang, Osamu Takahashi and Norio Shiratori
Understanding the fundamental end-to-end delay performance in mobile ad hoc networks (MANETs) is of great importance for supporting Quality of Service (QoS) guaranteed applications in such networks. While upper bounds and approximations for end-to-end delay in MANETs have been developed in literature, which usually introduce errors in delay analysis, the modeling of exact end-to-end delay in MANETs remains a technical challenge. This is partially due to the highly dynamical behaviors of MANETs, but also due to the lack of an efficient theoretical framework to capture such dynamics. This paper demonstrates the potential application of the powerful Quasi-Birth-and-Death (QBD) theory in tackling the challenging issue of exact end-to-end delay modeling in MANETs. We first apply the QBD theory to develop an efficient theoretical framework for capturing the complex dynamics in MANETs. We then show that with the help of this framework, closed form models can be derived for the analysis of exact end-to-end delay and also per node throughput capacity in MANETs. Simulation and numerical results are further provided to illustrate the efficiency of these QBD theory-based models as well as our theoretical findings.
Keywords: Ad hoc networks, routing protocol, delay performance analysis.