Enhancing Performance by Salvaging Route Reply Messages in On-Demand Routing Protocols for MANETs
Rendong Bai, Mukesh Singhal and Yi Luo
Researchers prefer on-demand routing protocols in mobile ad hoc networks where resources such as energy and bandwidth are constrained. In these protocols, a source discovers a route to a destination typically by flooding the entire or a part of the network with a route request (RREQ) message. The destination responds by sending a route reply (RREP) message to the source. The RREP travels hop by hop on the discovered route in the reverse direction or on another route to the source. Sometimes the RREP can not be sent to the intended next hop by an intermediate node due to node mobility or network congestion. Existing on-demand routing protocols handle the undeliverable RREP as a normal data packet – discard the packet and initiate a route error message. This is highly undesirable because a RREP message has a lot at stake – it is obtained at the cost of a large number of RREQ transmissions, which is an expensive and time-consuming process. In this paper, we propose the idea of salvaging route reply (SRR) to improve the performance of on-demand routing protocols. We present two schemes to salvage an undeliverable RREP. Scheme one actively sends a one-hop salvage request message to find an alternative path to the source, while scheme two passively maintains a backup path to the source. Furthermore, we present the design of two SRR schemes in AODV and prove that routes are loop-free after a salvaging. We con-duct extensive simulations to evaluate the performance of SRR, and the simulation results confirm the effectiveness of the SRR approach.