Social Group Search Optimizer Algorithm for Ad Hoc Network
Xiang Feng, Meiyi Ma, Huiqun Yu And Zhe Wang
Due to the dynamic structure in network topology and absence of a centralized administration in management, a specific routing algorithm satisfying the demands of QoS is required indeed in mobile Ad Hoc networks. A novel Social Group Search Optimizer algorithm is proposed by improving the GSO algorithm to a dynamic and discrete algorithm through the introducing of social behaviors. SGSO is divided into search and prey parts, where “search” is on duty to find the optimal solution effectively and “prey” is responsible for adjusting the algorithm to the dynamic change of objective functions. Dynamic Coupling Level is used to divide the Ad Hoc network and corresponding approaches and models based on SGSO are applied to routing algorithm, including the decision factor and local routing table. The convergence and correctness of our algorithm are verified mathematically and extensive experiments have been conducted to evaluate the efficiency and effectiveness of the proposed mechanism in mobile Ad Hoc networks. The results show that SGSO improves packet delivery ratio and reduces average end-to-end latency effectively, especially for large-scale and high-dynamic networks.
Keywords: Ad Hoc network, social behavior,